
 Towards Scalable Quantum Simulation on Wafer-Scale Engines

Ben Phillips, Dylan Kneidel, Alvir Nobel, and Esam El-Araby

Department of Electrical Engineering and Computer Science (EECS), University of Kansas (KU)

Introduction and Motivation

• Quantum computers provide exponential computational benefits over

classical computers.

• Existing quantum computers’ efficiency is limited by high noise and low

qubit count.

• Specialized hardware platforms like GPUs and FPGAs are preferred for

classical simulation to validate quantum algorithms [1-4].

• We propose an optimized method for the complex General Matrix-Vector

product (GEMV) operation that:

• Uses Cerebras Wafer Scale Engine (WSE) architecture

• Facilitates scalable, general purpose quantum simulation

• We experimentally demonstrate:

• The scalability of the proposed method using results from larger-scale

quantum circuits

• The suitability of Cerebras Wafer Scale Engines (WSEs) for scalable

quantum simulations

Background

Fundamentals of Quantum Computing

• Quantum computers leverage superposition and entanglement of

quantum states for advantage over classical computers in certain

workloads.

• Near-term noisy-intermediate-scale-quantum (NISQ) hardware

possesses strict decoherence constraints where quantum states break

down after a certain amount of time.

• Representation of an n-qubit quantum state vector:

• Quantum operations act on quantum states and can be represented as

unitary matrices or quantum “gates”.

• All quantum gates can be decomposed into fundamental single-qubit

rotation and two-qubit CNOT gates.

• Quantum circuits should be optimized in terms of circuit depth and

gate count to avoid decoherence and gate errors.

• All quantum operations can be simulated using matrix multiplication

(GEMV) between the circuit matrix and state vector.

Cerebras Wafer Scale Engine (WSE)

• AI processor containing a grid (fabric) of processing elements (PEs):

• Individual 48kB memory per PE

• No central memory or control hardware

• Communicate only with 4 neighboring PEs

• One-cycle memory access and communication

• Dataflow architecture with high internal bandwidth

• Designed for tensor operations in AI workloads

• Latest version: WSE-3

• 762 x 1176 = 896,112 PEs

• 1.1 GHz global clock frequency

• Limited to single precision (32 bits) for

floating-point values

• IO occurs at the edges of the wafer

• 124 channels on WSE-3

• Current SDK IO framework limits usage to 16 channels

PE Grid Size

• Data for 1x1 PE was extrapolated for n > 8

• Simulator SDK struggled to handle qubit count larger than 8

• Throughput stayed constant and close to 98MB per second

• At 12 qubits, 128x82 PE grid has a 671x speed advantage

• Continuous performance improvement with more qubits

• Better parallel advantage with larger circuits

• Improvements with more PEs

• Significant given constant input channels

• Larger variance with more qubits

Memory Usage

• Larger allocation improves performance

• Larger buffers reduce job count and associated costs

• Less noticeable at the high end

• 48kB is suitable for methodology on WSE-3

Mp/Np Ratio (Matrix Buffering)

• 1:1 (square) and 1:4 perform best

• Much higher Np performs poorly

• Larger Mp potentially scales better than 1:1

• Slower at low qubit counts, but just as fast at n = 12

• Deserves a more detailed future investigation

Mp/Np Ratio (Vector Buffering)

• Performance is strictly better with larger Np

• Benefits most from buffer re-use

• Likely related to slow output on WSE

• More extreme ratios should be explored

Algorithm Type

• Matrix buffering shows clear advantage at n = 10

• Matrix buffering benefits from input/output overlap

• Output is less optimized, hurting vector buffering more

• Advantage diminishes by n = 12

• Vector buffering may scale better with n > 12

• Methods are too similar overall to conclude that

one is better than the other

QHT Image Fidelity

• Compared against Qiskit

Aer and classically-

performed GEMV for

correctness

• Tested at 100%, verifying

no loss from the simulated

methodology

Conclusion and Future Work

In This Work

• We proposed a method for quantum simulation using the

General Matrix-Vector product (GEMV) operation on

Cerebras’ Wafer-Scale Engines (WSEs)

• We demonstrated scalability and parallel advantage

using WSE simulations

• Results indicate increasing parallel performance

benefits with larger PE grids and qubit counts

• Method scales well to the size of a physical WSE

• We investigated optimal configurations for multiple

variables of our method

• Block aspect ratio & buffering scheme

Future Work

• Investigate optimizations to proposed techniques and

implementations

• Specialize to specific quantum circuit types, accelerating

the method to compete with other hardware platforms

• Sparse matrix optimization

• Reduced matrix value range (integers, 0s & 1s, etc.)

• Tensor contraction & circuit pipelining

• Include quantum error correction (QEC) techniques

• Port to Cerebras WSE hardware

Proposed Methodology

Compute Distribution for Maximum Parallelization

• With n qubits:

• Input and output vectors have N = 2
n
 values

• Circuit matrix has N
2
 values

• Each vector value accessed N times

• Each matrix value accessed once

• Distribute matrix elements uniformly → distribute computation uniformly

• WSE grid has w × h PEs

• Partition matrix into w × h blocks of size Mp × Np

• Extra space is padded with zeros

• Input vector has h blocks of Np values

• Output vector has w blocks of Mp values

• Each PE gets one block of matrix and input vector,

producing one partial block of output vector

• Assign blocks to PEs spatially

• Input vector blocks shared across row of PEs

• Row/column convention flipped from matrix for faster input

• Output vector block accumulated down column of PEs

• Bottom row outputs final collected result

Algorithm on PEs

• Matrix and input vector are two inputs

• Must buffer one, then compute when the other arrives

• Two variants of algorithm explored

• Buffer matrix, compute by vector data

• Great for multiple input vectors

• Buffer vector, compute by matrix data

• Better structure for specialization

• Three stages to algorithm:

1) Input matrix/vector and buffer

2) Input vector/matrix and compute

3) Collect output vector and output

Scaling Beyond Memory Constraints

• Memory capacity S = 48kB

• Complex value size C = 8B (two 32-bit floats)

• Program size P ≈ 5kB

• Space for about 5500 buffered values

• Matrix buffer too small for 17 qubits on WSE-3

• Vector buffer too small for 23 qubits

• Partition matrix again into multiple “jobs”

• Jobs run in sequence, in any order

• Job dimensions Mj × Nj configurable

• Optimization opportunities while scheduling jobs

• Choose Mj × Nj to minimize zero padding

• Align across rows to skip collection & output

• With vector buffering, align down columns to skip

vector input

• Step 3 output can overlap with next step 1 input

• Jobs allow adjustable Mj : Nj aspect ratio

• Larger Mj: Fewer times input vector needs to be sent

• Generally better for matrix buffering

• Larger Nj: Less partial result data to collect & output

• Generally better for vector buffering

Experimental Setup

Analysis Platform

• Cerebras’ WSE simulator used to run and profile our method

• Counts clock cycles required for entire GEMV operation

• Simulates variable number of PEs

• Can’t simulate large (WSE-3 scale) PE grids

• We demonstrate scalability by varying PE grid size

• Compare results for 1 PE up to 128 x 82 PEs (1.3% WSE-3)

• WSE-3 aspect ratio of 1.555:1 maintained

• Results compared against Qiskit Aer simulator

Input Data

• Input matrix and vector created with random values

• QHT circuits created for realistic application Qiskit [11]

• Gray-scale images of size 8x8 to 64×64 pixels were used

Results and Analysis

References

[1] Efthymiou, S., Ramos-Calderer, S., Bravo-Prieto, C., P érez-Salinas,A., Garc ́ıa-Mart ́ın, D., Garcia-Saez, A., Latorre, J.I. and

Carrazza, S., 2021. Qibo: a framework for quantum simulation with hardware acceleration. Quantum Science and Technology, 7

(1), p.015018.

[2] Horii, H. and Wood, C., 2023. Efficient techniques to gpu accelerations of multi-shot quantum computing simulations. arXiv

preprint arXiv:2308.03399

[3] Jones, T., Brown, A., Bush, I. and Benjamin, S.C., 2019. QuEST and high performance simulation of quantum computers.

Scientific reports, 9(1), p.10736

[4] Mahmud, N., El-Araby, E. and Caliga, D., 2019. Scaling reconfigurable emulation of quantum algorithms at high precision and

high-throughput. Quantum Engineering, 1(2), p.e19.

[5] S. Lie, "Cerebras Architecture Deep Dive: First Look Inside the Hardware/Software Co-Design for Deep Learning," in IEEE

Micro, vol. 43, no. 3, pp. 18-30, May-June 2023, doi: 10.1109/MM.2023.3256384.

[6] Brown, N., Echols, B., Zarins, J. and Grosser, T., 2022, August. Exploring the Suitability of the Cerebras Wafer Scale Engine

for Stencil-Based Computation Codes. In European Conference on Parallel Processing (pp. 51-65). Cham: Springer Nature

Switzerland.

[7] Ltaief, H., Hong, Y., Wilson, L., Jacquelin, M., Ravasi, M. and Keyes, D.E., 2023, November. Scaling the “memory wall” for

multi-dimensional seismic processing with algebraic compression on cerebras cs-2 systems. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis (pp.1-12).

[8] Rocki, K., Essendelft, D.V., Sharapov, I., Schreiber, R., Morrison, M., Kibardin, V., Portnoy, A., Dietiker, J.F., Syamlal, M.,

James, M., 2020, October. Fast Stencil-Code Computation on a Wafer-Scale Processor. In Proceedings of The International

Conference for High Performance Computing, Networking, Storage, and Analysis. arXiv preprint arXiv:2010.03660

[9] Dey, N., Gosal, G., Khachane, H., Marshall, W., Pathria, R., Tom, M. and Hestness, J., 2023. Cerebras-gpt: Open compute-

optimal language models trained on the cerebras wafer-scale cluster. arXiv preprint arXiv:2304.03208

[10] Orenes-Vera, M., Sharapov, I., Schreiber, R., Jacquelin, M., Van-dermersch, P. and Chetlur, S., 2023, June. Wafer-scale fast

fourier transforms. In Proceedings of the 37th International Conference on Supercomputing (pp. 180-191).

[11] IBM Quantum. Qiskit: An open-source framework for quantum computing, 2021.

Related Work

Cerebras Architecture Deep Dive [5]

• Introduces distributed built-in floating point multiply accumulate (FMAC)

instructions on WSE architecture

• Emphasizes high-bandwidth, low latency nature of WSE architecture

• Utilizes vector weight streaming to enable all AI model sizes on 1 chip

WSE Applications

 Stencil-Based Computation Codes [6]

• WSE outperforms 4 Nvidia V100 GPUs by 2.5 and 2 Intel Xeon Platinum

CPUs by around 114 times for solving Laplace’s equation

 Multi-Dimensional Seismic Processing with Algebraic Compression [7]

• Accelerates tile low-rank matrix-vector multiplications (TLR-MVMs),

assuming sparsity

• Scaling only achieved by utilizing additional hardware, requiring a mini-

mum of 6 CS-2 WSEs and tested at a maximum of 48

 Fast Stencil-Code Computation on a Wafer-Scale Processor [8]

• Numerically solves PDEs without designing to scale, using 65% of CS-1

• Uses half-precision (16-bit) floats for hardware sparsity optimizations

 Cerebras-GPT [9]

• Compute-optimal language models ranging from 111M to 13B parameters,

trained on the Eleuther Pile dataset

 Fast Fourier Transforms [10]

• Up to 3-dimensional arrays on the Cerebras CS-2 system, which uses a

wafer-scale engine (WSE) with around 850,000 processing elements

Hardware Acceleration for Quantum Simulation

 Qibo [1]

• Utilizing multi-threading CPUs, single GPUs, and multi-GPU accelerators

 Multi-Shot [2]

• Using batch execution and shot-branching to optimize multi-shot quantum

computing simulations on GPUs

 QuEST [3]

• Hybrid GPU-accelerated simulator designed for universal quantum circuits that

can handle pure and mixed states

 Reconfigurable Emulation [4]

• Reconfigurable emulation of quantum algorithms focusing on achieving high

precision and high throughput

Matrix Buffering

Vector Buffering

1)
Input
value

arrives

2)
Multiply
matrix
column 3) Accumulate into buffer

4) Repeat for each input

1)
Input
value

arrives

2)
Multiply
vector
value

3) Accumulate into buffer

4) Repeat for each input

Acknowledgements: This research used resources of the Oak Ridge

Leadership Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC05-00OR22725.

Relevant Variables

• PE grid size - demonstrates scaling and distribution

• Memory availability - restricted to match smaller WSE size

• Mp & Np - controls job size and aspect ratio

• Input channels - always 16 used, except 1 for 1x1 PE

• PE grid height is always a multiple of 16 to minimize IO

irregularities influencing performance

• More than 100 actually available on WSE-3

• Algorithm - matrix buffering / vector buffering differences

• Qubit count (n) - number of qubits simulated

Performance Metrics

• Throughput (GB/s) - calculated from clock cycle count

• Speedup - parallel advantage over a serial processor

Simulated QHT-based Dimension Reduction on (64×64) Images

Original Image Low-frequency 1-Level Decomposition

Original Image Low-frequency 1-Level Decomposition

Cerebras SDK Simulator Debug View

Dataflow view of algorithm on scaled-down WSE

