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Introduction and Motivation 

• Quantum computers provide exponential computational benefits over 

classical computers. 

• Existing quantum computers’ efficiency is limited by high noise and low 

qubit count. 

• Specialized hardware platforms like GPUs and FPGAs are preferred for 

classical simulation to validate quantum algorithms [1-4]. 

• We propose an optimized method for the complex General Matrix-Vector 

product (GEMV) operation that: 

• Uses Cerebras Wafer Scale Engine (WSE) architecture 

• Facilitates scalable, general purpose quantum simulation 

• We experimentally demonstrate: 

• The scalability of the proposed method using results from larger-scale 

quantum circuits 

• The suitability of Cerebras Wafer Scale Engines (WSEs) for scalable 

quantum simulations 

Background 

Fundamentals of Quantum Computing 

• Quantum computers leverage superposition and entanglement of 

quantum states for advantage over classical computers in certain 

workloads. 

• Near-term noisy-intermediate-scale-quantum (NISQ) hardware 

possesses strict decoherence constraints where quantum states break 

down after a certain amount of time. 

• Representation of an n-qubit quantum state vector: 

• Quantum operations act on quantum states and can be represented as 

unitary matrices or quantum “gates”. 

• All quantum gates can be decomposed into fundamental single-qubit 

rotation and two-qubit CNOT gates. 

• Quantum circuits should be optimized in terms of circuit depth and 

gate count to avoid decoherence and gate errors. 

• All quantum operations can be simulated using matrix multiplication 

(GEMV) between the circuit matrix and state vector. 

Cerebras Wafer Scale Engine (WSE) 

• AI processor containing a grid (fabric) of processing elements (PEs): 

• Individual 48kB memory per PE 

• No central memory or control hardware 

• Communicate only with 4 neighboring PEs 

• One-cycle memory access and communication 

• Dataflow architecture with high internal bandwidth 

• Designed for tensor operations in AI workloads 

 

 

 

 

 

 

 

 

• Latest version: WSE-3 

• 762 x 1176 = 896,112 PEs 

• 1.1 GHz global clock frequency 

• Limited to single precision (32 bits) for 

floating-point values 

• IO occurs at the edges of the wafer 

• 124 channels on WSE-3 

• Current SDK IO framework limits usage to 16 channels 

PE Grid Size 

• Data for 1x1 PE was extrapolated for n > 8 

• Simulator SDK struggled to handle qubit count larger than 8 

• Throughput stayed constant and close to 98MB per second 

• At 12 qubits, 128x82 PE grid has a 671x speed advantage 

• Continuous performance improvement with more qubits 

• Better parallel advantage with larger circuits 

• Improvements with more PEs 

• Significant given constant input channels 

• Larger variance with more qubits 

 

Memory Usage 

• Larger allocation improves performance 

• Larger buffers reduce job count and associated costs 

• Less noticeable at the high end 

• 48kB is suitable for methodology on WSE-3 

 

Mp/Np Ratio (Matrix Buffering) 

• 1:1 (square) and 1:4 perform best 

• Much higher Np performs poorly 

• Larger Mp potentially scales better than 1:1 

• Slower at low qubit counts, but just as fast at n = 12 

• Deserves a more detailed future investigation 

 

Mp/Np Ratio (Vector Buffering) 

• Performance is strictly better with larger Np 

• Benefits most from buffer re-use 

• Likely related to slow output on WSE 

• More extreme ratios should be explored 

 

Algorithm Type 

• Matrix buffering shows clear advantage at n = 10 

• Matrix buffering benefits from input/output overlap 

• Output is less optimized, hurting vector buffering more 

• Advantage diminishes by n = 12 

• Vector buffering may scale better with n > 12 

• Methods are too similar overall to conclude that  

one is better than the other 

 

QHT Image Fidelity 

• Compared against Qiskit 

Aer and classically-

performed GEMV for 

correctness 

• Tested at 100%, verifying 

no loss from the simulated 

methodology 

Conclusion and Future Work 

In This Work 

• We proposed a method for quantum simulation using the 

General Matrix-Vector product (GEMV) operation on 

Cerebras’ Wafer-Scale Engines (WSEs) 

• We demonstrated scalability and parallel advantage 

using WSE simulations 

• Results indicate increasing parallel performance 

benefits with larger PE grids and qubit counts 

• Method scales well to the size of a physical WSE 

• We investigated optimal configurations for multiple 

variables of our method 

• Block aspect ratio & buffering scheme 

 

 

Future Work 

• Investigate optimizations to proposed techniques and 

implementations 

• Specialize to specific quantum circuit types, accelerating 

the method to compete with other hardware platforms 

• Sparse matrix optimization 

• Reduced matrix value range (integers, 0s & 1s, etc.) 

• Tensor contraction & circuit pipelining 

• Include quantum error correction (QEC) techniques 

• Port to Cerebras WSE hardware 

Proposed Methodology 

Compute Distribution for Maximum Parallelization 

• With n qubits: 

• Input and output vectors have N = 2
n
 values 

• Circuit matrix has N
2
 values 

• Each vector value accessed N times 

• Each matrix value accessed once 

• Distribute matrix elements uniformly → distribute computation uniformly 

• WSE grid has w × h PEs 

• Partition matrix into w × h blocks of size Mp × Np 

• Extra space is padded with zeros 

• Input vector has h blocks of Np values 

• Output vector has w blocks of Mp values 

• Each PE gets one block of matrix and input vector, 

producing one partial block of output vector 

• Assign blocks to PEs spatially 

• Input vector blocks shared across row of PEs 

• Row/column convention flipped from matrix for faster input 

• Output vector block accumulated down column of PEs 

• Bottom row outputs final collected result 

 

 

Algorithm on PEs 

• Matrix and input vector are two inputs 

• Must buffer one, then compute when the other arrives 

• Two variants of algorithm explored 

• Buffer matrix, compute by vector data 

• Great for multiple input vectors 

• Buffer vector, compute by matrix data 

• Better structure for specialization 

• Three stages to algorithm: 

1) Input matrix/vector and buffer 

2) Input vector/matrix and compute 

3) Collect output vector and output 

Scaling Beyond Memory Constraints 

• Memory capacity S = 48kB 

• Complex value size C = 8B (two 32-bit floats) 

• Program size P ≈ 5kB 

• Space for about 5500 buffered values 

• Matrix buffer too small for 17 qubits on WSE-3 

• Vector buffer too small for 23 qubits 

• Partition matrix again into multiple “jobs” 

• Jobs run in sequence, in any order 

• Job dimensions Mj × Nj configurable 

• Optimization opportunities while scheduling jobs 

• Choose Mj × Nj to minimize zero padding 

• Align across rows to skip collection & output 

• With vector buffering, align down columns to skip 

vector input 

• Step 3 output can overlap with next step 1 input 

• Jobs allow adjustable Mj : Nj aspect ratio 

• Larger Mj: Fewer times input vector needs to be sent 

• Generally better for matrix buffering 

• Larger Nj: Less partial result data to collect & output 

• Generally better for vector buffering 

Experimental Setup 

Analysis Platform 

• Cerebras’ WSE simulator used to run and profile our method 

• Counts clock cycles required for entire GEMV operation 

• Simulates variable number of PEs 

• Can’t simulate large (WSE-3 scale) PE grids 

• We demonstrate scalability by varying PE grid size 

• Compare results for 1 PE up to 128 x 82 PEs (1.3% WSE-3) 

• WSE-3 aspect ratio of 1.555:1 maintained 

• Results compared against Qiskit Aer simulator 

Input Data 

• Input matrix and vector created with random values 

• QHT circuits created for realistic application Qiskit [11] 

• Gray-scale images of size 8x8 to 64×64 pixels were used 

Results and Analysis 
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Related Work 

Cerebras Architecture Deep Dive [5] 

• Introduces distributed built-in floating point multiply accumulate (FMAC) 

instructions on WSE architecture 

• Emphasizes high-bandwidth, low latency nature of WSE architecture 

• Utilizes vector weight streaming to enable all AI model sizes on 1 chip 

 

WSE Applications 

 Stencil-Based Computation Codes [6] 

• WSE outperforms 4 Nvidia V100 GPUs by 2.5 and 2 Intel Xeon Platinum 

CPUs by around 114 times for solving Laplace’s equation  

 Multi-Dimensional Seismic Processing with Algebraic Compression [7]  

• Accelerates tile low-rank matrix-vector multiplications (TLR-MVMs),         

assuming sparsity 

• Scaling only achieved by utilizing additional hardware, requiring a mini-

mum of 6 CS-2 WSEs and tested at a maximum of 48 

 Fast Stencil-Code Computation on a Wafer-Scale Processor [8] 

• Numerically solves PDEs without designing to scale, using 65% of CS-1 

• Uses half-precision (16-bit) floats for hardware sparsity optimizations 

 Cerebras-GPT [9] 

• Compute-optimal language models ranging from 111M to 13B parameters, 

trained on the Eleuther Pile dataset 

 Fast Fourier Transforms [10] 

• Up to 3-dimensional arrays on the Cerebras CS-2 system, which uses a 

wafer-scale engine (WSE) with around 850,000 processing elements 

 

Hardware Acceleration for Quantum Simulation 

 Qibo [1] 

• Utilizing multi-threading CPUs, single GPUs, and multi-GPU accelerators 

 Multi-Shot [2] 

• Using batch execution and shot-branching to optimize multi-shot quantum      

computing simulations on GPUs 

 QuEST [3] 

• Hybrid GPU-accelerated simulator designed for universal quantum circuits that 

can handle pure and mixed states 

 Reconfigurable Emulation [4] 

• Reconfigurable emulation of quantum algorithms focusing on achieving high    

precision and high throughput 

Matrix Buffering 

Vector Buffering 

1) 
Input 
value 

arrives 

2) 
Multiply 
matrix 
column 3) Accumulate into buffer 

4) Repeat for each input 

1) 
Input 
value 

arrives 

2) 
Multiply 
vector 
value 

3) Accumulate into buffer 

4) Repeat for each input 
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Relevant Variables 

• PE grid size - demonstrates scaling and distribution 

• Memory availability - restricted to match smaller WSE size 

• Mp & Np - controls job size and aspect ratio 

• Input channels - always 16 used, except 1 for 1x1 PE 

• PE grid height is always a multiple of 16 to minimize IO 

irregularities influencing performance 

• More than 100 actually available on WSE-3 

• Algorithm - matrix buffering / vector buffering differences 

• Qubit count (n) - number of qubits simulated 

Performance Metrics 

• Throughput (GB/s) - calculated from clock cycle count 

• Speedup - parallel advantage over a serial processor 

 

Simulated QHT-based Dimension Reduction on (64×64) Images 

Original Image Low-frequency 1-Level Decomposition 

Original Image Low-frequency 1-Level Decomposition 

Cerebras SDK Simulator Debug View 

Dataflow view of algorithm on scaled-down WSE 


